Interactive Organ Segmentation Using Graph Cuts

نویسندگان

  • Yuri Boykov
  • Marie-Pierre Jolly
چکیده

An N-dimensional image is divided into “object” and “background” segments using a graph cut approach. A graph is formed by connecting all pairs of neighboring image pixels (voxels) by weighted edges. Certain pixels (voxels) have to be a priori identified as object or background seeds providing necessary clues about the image content. Our objective is to find the cheapest way to cut the edges in the graph so that the object seeds are completely separated from the background seeds. If the edge cost is a decreasing function of the local intensity gradient then the minimum cost cut should produce an object/background segmentation with compact boundaries along the high intensity gradient values in the image. An efficient, globally optimal solution is possible via standard min-cut/max-flow algorithms for graphs with two terminals. We applied this technique to interactively segment organs in various 2D and 3D medical images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Segmentation of Lung Nodules using AdaBoost and Graph Cuts

In this paper, we propose an interactive method for lung nodule segmentation. Given a seed point, the segmentation process consisting of three steps is done automatically. The first step is intensity normalization. The second one is to build an energy function for graph cuts. The third one is to do the segmentation by graph cuts. In the third step, if there are imperfects in the result, we prov...

متن کامل

Interactive Image Segmentation using Graph Cuts

This paper presents an accurate interactive image segmentation tool using graph cuts and image properties. Graph cuts is a fast algorithm for performing binary segmentation, used to find the global optimum of a cost function based on the region and boundary properties of the image. The user marks certain pixels as background and foreground, and Gaussian mixture models (GMMs) for these classes a...

متن کامل

Multiple Sclerosis Lesion Segmentation Using an Automatic Multimodal Graph Cuts

Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed ...

متن کامل

An Interactive Editing Framework for Electron Microscopy Image Segmentation

There are various automated segmentation algorithms for medical images. However, 100% accuracy may be hard to achieve because medical images usually have low contrast and high noise content. These segmentation errors may require manual correction. In this paper, we present an interactive editing framework that allows the user to quickly correct segmentation errors produced by automated segmenta...

متن کامل

Interactive Automatic Hepatic Tumour CT Image Segmentation

The problem of interactive foreground/background segmentation in still images is of great practical importance in image editing. They avoid the boundary-length bias of graph-cut methods and results in increased sensitivity to seed placement. A new proposed method of fully automatic processing frameworks is given based on Graph-cut and Geodesic Graph cut algorithms. This paper addresses the prob...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000